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Funding. This thesis will be funded by AI chair “Baccarat” managed by Rémi Bardenet.

Starting date. To be discussed with the advisor. A PhD in France takes 3 years, typically
extended by 6 months if needed. It is possible, and actually recommended, to arrange a master’s
level internship before the thesis starts.

Environment. The site is CRIStAL, the department of computer science of the University
of Lille, where supervisor Rémi Bardenet is based. Besides roughly 100 people working on data
science and signal processing, CRIStAL hosts a group of 7-10 people dedicated precisely to the
applications of repulsive point processes in data science, funded either by the Baccarat AI chair
or ERC grant Blackjack. Moreover, we have strong links to the department of mathematics in
Laboratoire Painlevé, a few minutes away by foot. A weekly workgroup between the two labs
is further devoted to point processes and their applications, with a focus on interacting point
processes. This makes Lille a rich scientific environment for the thesis.

Context. A point process is a random discrete set of points in a generic space. A broad
interest has recently emerged around point processes that exhibit a regular arrangement of
their points in a wide sense. Figure 1(b) shows an example of such a regular arrangement
in 2D, while Figure 1(a) shows the same number of i.i.d. points drawn uniformly on the
same rectangle, for reference. In condensed matter physics, it has been observed that particle
systems like Figure 1(b) are actually so regularly spread that the variance of the number of
points in a large window is lower than expected, a phenomenon called suppressed fluctuations,
or hyperuniformity. This has triggered a line of research in mathematical probability around so-
called repulsive point processes, like zeros of Gaussian analytic functions (GAFs; Hough et
al. (2009)) and determinantal point processes (DPPs; Hough et al. (2006)). In less than 10 years,
machine learners and statisticians have then turned some of these repulsive point processes into
powerful subsampling tools (Kulesza and Taskar, 2012; Derezinski and Mahoney, 2021;
Belhadji, Bardenet, and Chainais, 2020b; Bardenet and Hardy, 2020) and statistical models
(Kulesza and Taskar, 2012; Lavancier, Møller, and Rubak, 2014).

For instance, Belhadji, Bardenet, and Chainais (2020a) propose to perform feature selection
in linear regression using DPPs. A DPP is a point process in which points all interact with
each other, and where the interaction is encoded by a kernel, in the same sense as the kernel of
support vector machines. It can reasonably be argued that DPPs are the kernel machine of point
processes. In the case of (Belhadji, Bardenet, and Chainais, 2020a), the point process draws a
set of indices of jointly dissimilar columns of a the (wide) feature matrix. The well-spreadedness
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Figure 1: (a) A i.i.d. uniform draw, along with two draws of repulsive point processes: (b) a
determinantal point process, and (c) the zeros of the planar Gaussian analytic function.

of the point process is measured by how well the span of the selected columns approximates the
span of the first principal directions. We showed in particular that the resulting set of columns
led to performance similar to PCA, while leading to more interpretable features.

As another example, repulsive point processes have helped characterize the behaviour of
the zeros of time-frequency transforms of white noises (Bardenet, Flamant, and Chainais, 2018;
Bardenet and Hardy, 2019) in signal processing. Time-frequency transforms are the math-
ematical equivalent of musical scores, i.e. they map a signal (say, the sound of an instrument
recorded in a noisy instrument) to a function of time and frequency that encodes what fre-
quency is present at what time, like notes on a score. One such transform is the spectrogram,
and Figure 1(c) shows the spectrogram of a white Gaussian noise sample. The zeros of the
spectrogram, shown as white dots, are a repulsive point process. It turns out that it has the
same law as the zeros of the planar GAF, a Gaussian process of particular importance in prob-
ability (Hough et al., 2009). The mathematical knowledge we have of this point process in turn
leads to improved signal reconstruction algorithms (Bardenet, Flamant, and Chainais, 2018).

Objectives. To get acquainted with the interdisciplinary topic of repulsive point processes,
we shall start with a project that fits in current work by the group. Ideally, this project shall
be tackled during a master’s level internship prior to starting the PhD. Depending on the
student’s background and taste, this can be, e.g., (i) topological data analysis applied to the
zeros of random spectrograms like Figure 1(c) in statistical signal processing. Alternately, the
internship could revolve around (ii) negatively dependent subsampling for large-scale machine
learning. For instance, how can we use negative dependence to build minibatches in stochastic
gradient descent for empirical risk minimization in ML? This is related to recent work by
the supervisor (Bardenet, Ghosh, and Lin, 2021) on determinantal subsampling for stochastic
gradient descent.

After this first project, we will pick an ambitious open problem in line with the objectives of
the Baccarat AI chair, according to the student’s interest. Candidate problems include coming
up with a negatively dependent minibatch construction that scales to large-dimensional systems
or fast sampling algorithms for determinantal point processes in machine learning.
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